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Exper iments  have demonst ra ted  [1] that the transit ion of s t reaml ine- type  flow into turbulent 
flow in a boundary layer  occurs  as a resu l t  of the formation and development of turbulent spots 
apparent ly a r i s ing  f rom small  natural  dis turbances.  A study of the nonlinear evolution and in- 
teract ion of localized dis turbances  requi res  knowledge of their charac te r i s t i cs  to a l inear ap-  
proximation [2]. In the cu r ren t  work, resul ts  a re  presented of calculations of such cha rac te r -  
is t ics for the f i rs t  two unstable modes in a supersonic boundary layer  on a two-dimensional 
plate (M = 4.5, T w = 4.44). 

The nature of the instability of a compress ib le  boundary layer  has been considered [3]. An analysis  of 
the asymptot ic  i t -"  co) behavior of the solution of the initial problem for a disturbaRce ar i s ing  in a finite region 
in space also allows us to determine the cha rac te r i s t i c s  of an unstable wave train. At high t, the solution of 
the initial problem is writ ten in the form [3] 

C dk~ Pn(k)$+ikr 

/ l  

where Re Pn(k) > 0 in some region of the k-plane,  n is the number  of the unstable mode, and Pn(k) are  de ter -  
mined f rom Eq. (3.11) [3]. 

Let  us write the asymptot ic  equation for  one t e rm of the se r ies  (1) at high t using the method of s teepest  
descent,  

r . ~, ~? =----:=---~Pk e~'~ + 0 (l/t)}, (2) t~B s 

v=r/t, w=ip, co,=co(ks), 

where OL and fl a re  the components of the vec to r  k in the x and z direct ions,  respect ively,  and k s is determined 
f rom the equation 

dco 
d-'X- = v. (3) 

In the general  case  k s is a complex vec tor  and Eqs. (2) descr ibe  a packet with frequency co =Rews(V) , wave 
vec to r  k=Reks(V), and space and t ime modulated amplitude. 

Equation (3) was numer ica l ly  solved for the f i rs t  two unstable modes in the case of a two-dimensional 
dis turbance,  expanding at ze ro  angle to the flow. The resu l t s  of the calculations a re  depicted in Figs.  1-6. 
Figure  1 shows the location of the level line Re ~2 = 0 for the second mode in the complex plane ~ for the val -  
ues v = 0, 0.5, 0.666, 0.83, and 1.0 (the corresponding level lines are  indicated by the digits 1-5) when Re = 550. 
The dependence Re~(v) for the second mode when Re = 550, 1140, and 3000 are  shown in Fig. 2 by solid curves  
(the corresponding curves  a re  denoted by the le t ters  a, b, and c). The same magnitude for the f i rs t  mode 
(Re = 1600) is depicted by a broken line. 
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Clearly, Re ~> 0 in some range of values of v, i.e., the localized disturbance decays into unstable 
trains propagating downstream at a finite velocity. The most rapidly intensified component of the train 
will move at a velocity 

(<I 
Ug = \dcz  r ]c~=c% ' 

where a 0 is a point on the real  a axis at  which w i reaches  a maximum. (The subscr ipts  "r"  and "i" de-  
note the real  and imaginary par ts  of the corresponding variables) .  F igures  3 and 4 depict the spectra l  
cha rac te r i s t i c s  for the second mode (curves a and c for Re = 550 and 3000) and Figs.  5 and 6 for the f i r s t  
mode. The wave number  and frequency for  the second mode are  near ly  constant within the entire range of 
var ia t ion of b, such that fir > 0, i.e., the unstable t rain associa ted with the second mode is near ly  mono-  
chromat ic .  The wave number and frequency for the f i rs t  mode in the range of intensification va ry  greatly.  

The pat tern of convective hydrodynamic instability is qualitatively simulated in a l inear approxi-  
mation by an equation with constant coefficients,  

~ § u~;~ -- (~s § ~)~.~ § i~(al § ct~)~;~ + ~ l a~=0 ,  (4) 

whose dispers ion equation has the form 

p(~)=--  i ( u u  § e a  2) - -  ~(u  - -  cq) ( a  - -  a2) .  (5) 

All the constants  in Eqo (4) a re  rea l  and u, ~, ~1, and ~2 are  positive. 

The solution of Eq. (3) for the dispers ion equation (5) is expressed  in the form 

(~ - %) (• + ~) 
a s = a ~ 2 4 7  2~ , v = x / t ,  

41 



4 4~ ; ~ - -  , v f - u  -~e~0. 

Equation (5) for the second mode yields a sa t i s fac tory  quantitative approximation. The constants in Eq. (4) 
for Re = 3000 have the values 

a,  ~ 0J86; a2-~ 0.243; ~ ~ 4.5; e ~ --0.5t5; u .~  t.02. 
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I N T R O D U C  T I C  N 

An integrated method of calculat ing turbulent flow on two-dimensional  and ax isymmetr ica l  bodies in 
separat ion and at tached boundary layer  zones a r i s ing  in the neighborhood of a concave corner  and on a spher-  
ical intake par t  of a body is proposed. The method allows us to calculate p res su re  distribution, displacement 
thickness,  and momentum thickness within the region in which the boundary layer  interacts  with an external 
ideal flow. The phenomenon of the interaction between a viscous and near ly  inviscous flow is widespread. It 
is observed when a concave corner  is s t reamlined,  as a p r e s su re  shock impinges on a boundary layer,  in the 
case  of flow in the neighborhood of the spherical  intake par t  of an ax isymmetr ica l  body, and in many other 
cases .  The distinctive features  of this phenomenon when two-dimensional  and ax isymmetr ica l  bodies are  
s t reaml ined has been theoret ical ly  investigated in [1-4]. Separated flows due to a p re s su re  shock or  an ob- 
stacle have been studied in [1-3], while [4] determined the base p res su re  behind the spherical  intake par t  of a 
body. Theoret ical  investigations for the case of "free" separated flows in which the separat ion point and the 
at tached boundary layer  were not fixed, for  example,  on a plate with long wedge attached to it, have been c a r -  
r ied  out within the context of boundary- layer  theory using integrated methods. In the cu r ren t  ar t ic le ,  an in- 
tegra ted  method of calculat ing flows in a base region [5] is used to calculate "free" separated flows in the 
neighborhood of a concave corner  and on a spherical  intake par t  of a body with a base support. The resul ts  of 
the calculat ions a re  compared  to experimental  data. 

w Let  us consider  the following approximate flow scheme in the separation zones of a boundary layer  
in f ront  of a wedge (flap) in the fo rm of a scheme for the ordinary  interaction of a turbulent boundary layer  
with an external  ideal flow (Fig. 1). The interaction region is within the separat ion zone 1-4 and the attached 
zone 5-8. 

In the separat ion zone, we distinguish gradient  flow 1-3 and cons tan t -p ressure  flow 3-4; S1S 2 is the con- 
stant  flow rate  line, where S 1 and S 2 are  cr i t ical  points. The calculation of the interaction of viscous layers  
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