CHARACTERISTICS OF AN UNSTABLY LOCALIZED
DISTURBANCE IN A COMPRESSED BOUNDARY LAYER

A. S. Dryzhov UDC 532.526

Experiments have demonstrated {1] that the transition of streamline-type flow into turbulent
flow in a boundary layer occurs as a result of the formation and development of turbulent spots
apparently arising from small natural disturbances. A study of the nonlinear evolution and in-
teraction of localized disturbances requires knowledge of their characteristics to a linear ap-
proximation [2]. In the current work, results are presented of calculations of such character-
istics for the first two unstable modes in a supersonic boundary layer on a two-dimensional
plate (M=4.5, Ty, =4.44).

The nature of the instability of a compressible boundary layer has been considered [3]. An analysis of
the asymptotic (t— =) behavior of the solution of the initial problem for a disturbance arising in a finite region
in space also allows us to determine the characteristics of an unstable wave train. At high t, the solution of
the initial problem is written in the form [3]

p=3 \“ dk \pnkeﬂn(k)i-l-ikr’ 1)
n
where Re P, (k) >0 in some region of the k~plane, n is the number of the unstable mode, and p,(k) are deter-
mined from Eq. (3.11) [3].

Let us write the asymptotic equation for one term of the series (1) at high t using the method of steepest
descent,

tVH

H= ((D;O‘mgﬂ - m;ﬂ)k=k, , Q= i(ks" — "')s),

P = const Pr,e? {1+ 0 (1/1)}, (2)

V:l'/t, Ww—= lp, W= m(ks)v

where @ and 8 are the components of the vector k in the x and z directions, respectively, and kg is determined
from the equation

d
—d% =V, (3)

In the general case kg is a complex vector and Egs. (2) describe a packet with frequency w=Rewg(v), wave
vector k=RekS(V), and space and time modulated amplitude.

Equation (8) was numerically solved for the first two unstable modes in the case of a two-dimensional
disturbance, expanding at zero angle to the flow. The results of the calculations are depicted in Figs. 1-6.
Figure 1 shows the location of the level line Re =0 for the second mode in the complex plane @ for the val-
ues v=0, 0.5, 0.666, 0.83, and 1.0 (the corresponding level lines are indicated by the digits 1-5) when Re =550.
The dependence ReQ(v) for the second mode when Re =550, 1140, and 3000 are shown in Fig. 2 by solid curves
(the corresponding curves are denoted by the letters a, b, and ¢). The same magnitude for the first mode
(Re =1600) is depicted by a broken line.
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Clearly, Re >0 in some range of values of v, i.e., the localized digturbance decays into ungiable
trains propagating downstream at a finite velocity. The most rapidly intensified component of the train
will move at a veloeity

&)
Vg = | —L ,
8 docr p—

where @ is a point on the real @ axis at which w; reaches a maximum. (The subscripts *c" and "i" de-
note the real and imaginary parts of the corresponding variables). Figures 3 and 4 depict the speciral
characteristics for the second mode {(curves a and ¢ for Re =550 and 3000) and Figs. 5 and 6 for the first
mode. The wave number and frequency for the second mode are nearly constant within the entire range of
variation of b, such that €,.>0, i.e., the unstable train associated with the second mode is nearly mono-
chromatic. The wave number and frequency for the first mode in the range of intensification vary greatly.

The pattern of convective hydrodynamic instability is qualitatively simulated in a linear approxi-
madtion by an equation with constant coefficients,

P+ e — (I8 + B + oy + @by + 2i0p=0, (4)
whose dispersion equation has the form
pley=— i(ue + eo?) — Eo — o) (o — ). {5)

All the constants in Eq. (4) are real and u, §, ¢4, and @, are positive.

The solution of Eq. (3) for the dispersion equation {5) is expressed in the form

v} (% i)
as=oc0+(——g2)k—, v = 2/t,

n=e/E, b =F(1 + %%, apy=(0, + @,)/2, Vg =u + 2exy;
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— 2 — 2
Q,(a,) =gz Co 0, (0) — oy 0— ) + 2, vy = u 4 e

Equation (5) for the second mode yields a satisfactory quantitative approximation. The constants in Eq. (4)
for Re =3000 have the values

a; =~ 0486; a,x 0.243; &=~ 4.5; &~ —0.515; u~ 1.02.

LITERATURE CITED

=

H. Schlichting, Boundary Layer Theory, McGraw-Hill (1966).

2. K. Stewartson, and J. T. Stuart, "A nonlinear instability theory for a wave system in plane Poiseuille
flow," J. Fluid Mech., 48, Part 3 (1971).

3. A. 8. Dryzhov, "Stability of a compressible boundary layer relative to a localized disturbance," Zh.

Prikl. Mekh. Tekh. Fiz., No. 3 (1973).

CALCULATION OF THE INTERACTION OF A TURBULENT
BOUNDARY LAYER WITH AN EXTERNAL SUPERSONIC
FLOW ON THE CONCAVE CORNER AND ON THE
SPHERICAL INTAKE PART OF A BODY

A. N. Antonov » UDC 532.526.4 : 533.6.011.5

INTRODUCTION

An integrated method of calculating turbulent flow on two-dimensional and axisymmetrical bodies in
separation and attached boundary layer zones arising in the neighborhood of a concave corner and on a spher-
ical intake part of a body is proposed. The method allows us to calculate pressure distribution, displacement
thickness, and momentum thickness within the region in which the boundary layer interacts with an external
ideal flow. The phenomenon of the interaction between a viscous and nearly inviscous flow is widespread. It
is observed when a concave corner is streamlined, as a pressure shock impinges on a boundary layer, in the
case of flow in the neighborhood of the spherical intake part of an axisymmetrical body, and in many other
cases. The distinctive features of this phenomenon when two-dimensional and axisymmetrical bodies are
streamlined has been theoretically investigated in [1-4]. Separated flows due to a pressure shock or an ob-
stacle have been studied in [1-3], while [4] determined the base pressure behind the spherical intake part of a
body. Theoretical investigations for the case of "free" separated flows in which the separation point and the
attached boundary layer were not fixed, for example, on a plate with long wedge attached to it, have been car-
ried out within the context of boundary-layer theory using integrated methods. In the current article, an in-
tegrated method of calculating flows in a base region [5] is used to calculate "free" separated flows in the
neighborhood of a concave corner and on a spherical intake part of a body with a base support. The results of
the calculations are compared to experimental data.

§1. Let us consider the following approximate flow scheme in the separation zones of a boundary layer
in front of a wedge (flap) in the form of a scheme for the ordinary interaction of a turbulent boundary layer
with an external ideal flow (Fig. 1). The inferaction region is within the separation zone 1-4 and the attached
zone 5-8.

In the separation zone, we distinguish gradient flow 1-3 and constant-pressure flow 3-4; $;S; is the con-
stant flow rate line, where S; and S, are critical points. The calculation of the interaction of viscous layers
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